Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism
نویسندگان
چکیده
Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS). Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.
منابع مشابه
The SaeRS Two-Component System Controls Survival of Staphylococcus aureus in Human Blood through Regulation of Coagulase
The SaeRS two-component system plays important roles in regulation of key virulence factors and pathogenicity. In this study, however, we found that the deletion mutation of saeRS enhanced bacterial survival in human blood, whereas complementation of the mutant with SaeRS returned survival to wild-type levels. Moreover, these phenomena were observed in different MRSA genetic background isolates...
متن کاملThe Two-Component Signal Transduction System ArlRS Regulates Staphylococcus epidermidis Biofilm Formation in an ica-Dependent Manner
Due to its ability to form biofilms on medical devices, Staphylococcus epidermidis has emerged as a major pathogen of nosocomial infections. In this study, we investigated the role of the two-component signal transduction system ArlRS in regulating S. epidermidis biofilm formation. An ArlRS-deficient mutant, WW06, was constructed using S. epidermidis strain 1457 as a parental strain. Although t...
متن کاملRole of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus
The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus, but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated ...
متن کاملThe staphylococcal saeRS system coordinates environmental signals with agr quorum sensing.
sae is a two-component signal transduction system in Staphylococcus aureus that regulates the expression of many virulence factors at the transcriptional level and appears to act synergistically with agr in some cases. In this study, the interactions between sae and agr have been characterized in some detail. It was found that the sae locus is larger and more complex than originally envisioned,...
متن کاملThe Eukaryotic-Type Serine/Threonine Protein Kinase Stk Is Required for Biofilm Formation and Virulence in Staphylococcus epidermidis
BACKGROUND Serine/threonine kinases are involved in gene regulation and signal transduction in prokaryotes and eukaryotes. Here, we investigated the role of the serine/threonine kinase Stk in the opportunistic pathogen Staphylococcus epidermidis. METHODOLOGY/PRINCIPAL FINDINGS We constructed an isogenic stk mutant of a biofilm-forming clinical S. epidermidis isolate. Presence of stk was impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014